Self-imaging with finite energy.
نویسندگان
چکیده
General solutions and conditions are presented for paraxial waves that image themselves with different scales through free propagation. These waves, represented as superpositions of Gauss-Laguerre modes, have finite energy and thus finite effective width. The self-imaging wave fields described by Montgomery [J. Opt. Soc. Am. 57, 772 (1967)], which possess a Fourier transform that is confined to a ring structure, are obtained as a specific limiting case of an infinite aperture.
منابع مشابه
Post-Tensioned Steel Connections Self-Centering Behavior Using the Finite Element Method
Due to lack of the proper and well behavior of steel moment-resisting connections subjected to the great and major earthquakes, excessive researches have been conducted to mitigate the damages on the primary elements and connections. Therefore, elimination of residual drift and increasing the plastic rotation capacity for the connectors in the panel zone are required. The main purpose of this s...
متن کامل3-D RF Coil Design Considerations for MRI
High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...
متن کاملExperimental and Numerical Study of Energy Absorption Capacity of Glass Reinforced SCC Beams
Various experimental studies have been carried out on glass fiber reinforced concrete (GFRC), but in limited studies, the behavior of this type of concrete is evaluated using finite element method (FEM). In this study an analysis model is presented for predicting energy absorption capacity of glass fiber reinforced self-compacting concrete (GFRCSCC) beams and the results are compared with exper...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics letters
دوره 22 4 شماره
صفحات -
تاریخ انتشار 1997